Skip to content

Tutte's Embedding

Example

import mouette as M
mesh = M.mesh.load(args.model)
tutte = M.parametrization.TutteEmbedding(mesh, [boundary_mode], use_cotan=True, verbose=True)
tutte.run()
M.mesh.save(mesh, "tutte_model.obj")
M.mesh.save(tutte.flat_mesh, "tutte_flat.obj")

See https://github.com/GCoiffier/mouette/blob/main/examples/parametrization/tutte.py

PointCloud(data=None)

Bases: Mesh

A data structure for representing point clouds

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

__str__ str

Representation of the object and its elements as a string.

id_vertices property

Shortcut for range(len(self.vertices))

append(x)

Shortcut for self.vertices.append(x), since we can only append elements in the 'vertices' container

PolyLine(data=None)

Bases: Mesh

A data structure for representing polylines.

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

edges DataContainer

the container for all edges

__str__

Representation of the object and its elements as a string.

id_edges property

Shortcut for range(len(self.edges))

id_vertices property

Shortcut for range(len(self.vertices))

SurfaceMesh(data=None)

Bases: Mesh

A data structure for representing polygonal surfaces.

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

edges DataContainer

the container for all edges

faces DataContainer

the container for all faces

face_corners DataContainer

the container for all corner of faces

boundary_edges list

list of all edge indices on the boundary

interior_edges list

list of all interior edge indices (all edges \ boundary_edges)

boundary_vertices list

list of all vertex indices on the boundary

interior_vertices list

list of all interior verticex indices (all vertices \ boundary_vertices)

connectivity _SurfaceConnectivity

the connectivity utility class

id_corners property

Shortcut for range(len(self.face_corners))

id_edges property

Shortcut for range(len(self.edges))

id_faces property

Shortcut for range(len(self.faces))

id_vertices property

Shortcut for range(len(self.vertices))

clear_boundary_data()

Clear all boundary data. Next call to a boundary/interior container or method will recompute everything

is_edge_on_border(u, v)

whether edge (u,v) is a boundary edge or not

Parameters:

Name Type Description Default
u int

vertex id

required
v int

vertex id

required

Returns:

Name Type Description
bool bool

whether edge (u,v) is a boundary edge or not. Returns False if (u,v) is not a valid edge.

is_quad()

Returns:

Name Type Description
bool bool

True if the mesh is quadrangular (all faces are quad)

is_triangular()

Returns:

Name Type Description
bool bool

True if the mesh is triangular (all faces are triangles)

is_vertex_on_border(u)

whether vertex u is a boundary vertex or not.

Parameters:

Name Type Description Default
u int

vertex id

required

Returns:

Name Type Description
bool bool

whether vertex u is a boundary vertex or not.

ith_vertex_of_face(fid, i)

helper function to get the i-th vertex of a face, i.e. self.faces[fid][i]

Parameters:

Name Type Description Default
fid int

face id

required
i int

vertex id in face. Should be 0 <= vid < len(face)

required

Returns:

Name Type Description
int int

the id of the i-th vertex in face fid (self.faces[fid][i])

pt_of_face(fid)

point coordinates of vertices of face fid

Parameters:

Name Type Description Default
fid int

face id

required

Returns:

Name Type Description
Iterable

iterator of Vec objects representing point coordinates of vertices

TutteEmbedding(mesh, boundary_mode='circle', use_cotan=False, verbose=False, **kwargs)

Bases: BaseParametrization

Tutte's embedding parametrization method for a disk inside a fixed boundary. The parametrization is locally injective (Floater, 1997) provided the boundary is convex.

References
  • [1] How to draw a graph, Tutte W.T., 1963

  • [2] Parametrization and smooth approximation of surface triangulations, Floater M.S., 1997

Parameters:

Name Type Description Default
mesh SurfaceMesh

the mesh to embed. Should be a surface with disk topology.

required
boundary_mode str

Shape of the boundary. Possible choices are ["square", "circle"]. Defaults to "circle".

'circle'
use_cotan bool

If True, uses cotangents as weights in the Laplacian matrix [2]. Otherwise, use Tutte's original barycentric embedding [1]. Defaults to False.

False
verbose bool

verbose mode. Defaults to False.

False

Other Parameters:

Name Type Description
save_on_corners bool

if True, the resulting uv-coordinates will be stored in an attribute on face corners. Otherwise, they are stored in an attribute on vertices. Defaults to True

custom_boundary (ndarray, optionnal)

a Nx2 array containing custom coordinates for the boundary vertices (N being the number of boundary vertices).

Raises:

Type Description
InvalidArgumentValueError

if 'boundary_mode' is not "square" or "circle".

flat_mesh: SurfaceMesh property

A flat representation of the mesh where uv-coordinates are copied to xy.

Returns:

Name Type Description
SurfaceMesh SurfaceMesh

the flat mesh

BoundaryMode

Bases: Enum

Enum that represents the shape of the boundary curve.

VolumeMesh(data=None)

Bases: Mesh

id_cells property

Shortcut for range(len(self.cells))

id_corners property

Shortcut for range(len(self.face_corners))

id_edges property

Shortcut for range(len(self.edges))

id_faces property

Shortcut for range(len(self.faces))

id_vertices property

Shortcut for range(len(self.vertices))

is_edge_on_border(*args)

Simple test to determine if a given edge is on the boundary of the mesh.

Returns:

Name Type Description
bool bool

Returns True if the given edge is on the boundary of the mesh.

is_face_on_border(*args)

Simple test to determine if a given face is on the boundary of the mesh.

Returns:

Name Type Description
bool bool

Returns True is the given face exists and is on the boundary of the mesh

is_tetrahedral()

Returns:

Name Type Description
bool bool

True if the mesh is tetrahedral (all cells are tetrahedra)