Skip to content

Least-Square Conformal Maps

Example

import mouette as M

mesh = M.mesh.load("path/to/mesh")
lscm = M.parametrization.LSCM(mesh, [options])
lscm.run()
See https://github.com/GCoiffier/mouette/blob/main/examples/parametrization/lscm.py

LSCM(mesh, verbose=False, **kwargs)

Bases: BaseParametrization

Least-Square Conformal Map algorithm for computing a parametrization of a mesh. /!\ The mesh should have the topology of a disk. Computed UVs are stored in the self.uvs container

References
  • [1] Least Squares Conformal Maps for Automatic Texture Atlas Generation, Levy et al. (2002)
  • [2] Spectral Conformal Parameterization, Mullen et al. (2008)
  • [3] Intrinsic Parameterizations of Surface Meshes, Desbrun et al. (2002)

Parameters:

Name Type Description Default
mesh SurfaceMesh

the supporting mesh. Should be a surface with disk topology.

required
verbose bool

verbose mode. Defaults to False.

False

Other Parameters:

Name Type Description
eigen bool

whether to solve a linear system with two fixed points or use an eigen solver. Defaults to True

save_on_corners bool

whether to store the results on face corners or vertices. Defaults to True

solver_verbose bool

verbose level. Defaults to False.

flat_mesh property

A flat representation of the mesh where uv-coordinates are copied to xy.

Returns:

Name Type Description
SurfaceMesh SurfaceMesh

the flat mesh

run()

Calls the solver on the LSCM system.

Raises:

Type Description
Exception

fails if the mesh is not a topological disk

PointCloud(data=None)

Bases: Mesh

A data structure for representing point clouds

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

__str__ str

Representation of the object and its elements as a string.

id_vertices property

Shortcut for range(len(self.vertices))

append(x)

Shortcut for self.vertices.append(x), since we can only append elements in the 'vertices' container

PolyLine(data=None)

Bases: Mesh

A data structure for representing polylines.

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

edges DataContainer

the container for all edges

__str__

Representation of the object and its elements as a string.

id_edges property

Shortcut for range(len(self.edges))

id_vertices property

Shortcut for range(len(self.vertices))

SurfaceMesh(data=None)

Bases: Mesh

A data structure for representing polygonal surfaces.

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

edges DataContainer

the container for all edges

faces DataContainer

the container for all faces

face_corners DataContainer

the container for all corner of faces

boundary_edges list

list of all edge indices on the boundary

interior_edges list

list of all interior edge indices (all edges \ boundary_edges)

boundary_vertices list

list of all vertex indices on the boundary

interior_vertices list

list of all interior verticex indices (all vertices \ boundary_vertices)

connectivity _SurfaceConnectivity

the connectivity utility class

id_corners property

Shortcut for range(len(self.face_corners))

id_edges property

Shortcut for range(len(self.edges))

id_faces property

Shortcut for range(len(self.faces))

id_vertices property

Shortcut for range(len(self.vertices))

clear_boundary_data()

Clear all boundary data. Next call to a boundary/interior container or method will recompute everything

is_edge_on_border(u, v)

whether edge (u,v) is a boundary edge or not

Parameters:

Name Type Description Default
u int

vertex id

required
v int

vertex id

required

Returns:

Name Type Description
bool bool

whether edge (u,v) is a boundary edge or not. Returns False if (u,v) is not a valid edge.

is_quad()

Checks if the mesh is a quadrangulation

Returns:

Name Type Description
bool bool

True if the mesh is quadrangular (all faces are quad)

is_triangular()

Checks if the mesh is a triangulation

Returns:

Name Type Description
bool bool

True if the mesh is triangular (all faces are triangles)

is_vertex_on_border(u)

whether vertex u is a boundary vertex or not.

Parameters:

Name Type Description Default
u int

vertex id

required

Returns:

Name Type Description
bool bool

whether vertex u is a boundary vertex or not.

ith_vertex_of_face(fid, i)

helper function to get the i-th vertex of a face, i.e. self.faces[fid][i]

Parameters:

Name Type Description Default
fid int

face id

required
i int

vertex id in face. Should be 0 <= vid < len(face)

required

Returns:

Name Type Description
int int

the id of the i-th vertex in face fid (self.faces[fid][i])

pt_of_face(fid)

point coordinates of vertices of face fid

Parameters:

Name Type Description Default
fid int

face id

required

Returns:

Name Type Description
Iterable

iterator of Vec objects representing point coordinates of vertices

VolumeMesh(data=None)

Bases: Mesh

id_cells property

Shortcut for range(len(self.cells))

id_corners property

Shortcut for range(len(self.face_corners))

id_edges property

Shortcut for range(len(self.edges))

id_faces property

Shortcut for range(len(self.faces))

id_vertices property

Shortcut for range(len(self.vertices))

is_edge_on_border(*args)

Simple test to determine if a given edge is on the boundary of the mesh.

Returns:

Name Type Description
bool bool

Returns True if the given edge is on the boundary of the mesh.

is_face_on_border(*args)

Simple test to determine if a given face is on the boundary of the mesh.

Returns:

Name Type Description
bool bool

Returns True is the given face exists and is on the boundary of the mesh

is_tetrahedral()

Returns:

Name Type Description
bool bool

True if the mesh is tetrahedral (all cells are tetrahedra)