Skip to content

Boundary First Flattening

Example

import mouette as M

mesh = M.mesh.load("path/to/mesh")
bff = M.parametrization.BoundaryFirstFlattening(mesh, bnd_scale_fctr=scale, verbose=True)
mesh = bff.run() # /!\ mesh is not modified in place

See https://github.com/GCoiffier/mouette/blob/main/examples/parametrization/bff.py

ArrayAttribute(elem_type, n_elem, elem_size=1, default_value=None)

Bases: _BaseAttribute

init method and the whole Attribute class are not supposed to be manipulated outside of the DataContainer class. An ArrayAttribute stores its values in a numpy array. This is a less flexible but safer approach than Attribute.

Parameters:

Name Type Description Default
elem_type

the type of the attribute (bool, int, float, complex, string)

required
n_elem int

Total number of elements in the container. Should match the size of the DataContainer the attribute is stored in.

required
elem_size int

Number of elem_type objects to be stored per element. Defaults to 1.

1
dense bool

description. Defaults to False.

required
default_value optional)

the default value of the attribute is n_elem is not specified. If it is not specified either, it will correspond to the default value of the type provided in elem_type.

None

__iter__()

Sparse attributes allow to iterate only over non-default elements

clear()

Empties the attribute. Frees the memory and ensures that all access return default value

empty()

Check if an attribute is empty. For an attribute to be empty, its number of elements should not be fixed, and the dictionnary should be empty

Attribute(elem_type, elem_size=1, default_value=None)

Bases: _BaseAttribute

init method and the whole Attribute class are not supposed to be manipulated outside of the DataContainer class

Parameters:

Name Type Description Default
elem_type

the type of the attribute (bool, int, float, complex, string)

required
elem_size int

Number of elem_type objects to be stored per element. Defaults to 1.

1
default_value optional)

the default value of the attribute is n_elem is not specified. If it is not specified either, it will correspond to the default value of the type provided in elem_type.

None

__iter__()

Sparse attributes allow to iterate only over non-default elements

clear()

Empties the attribute. Frees the memory and ensures that all access return default value

empty()

Check if an attribute is empty. For an attribute to be empty, its number of elements should not be fixed, and the dictionnary should be empty

BoundaryFirstFlattening(mesh, bnd_scale_fctr=None, bnd_curvature=None, verbose=False, **kwargs)

Bases: BaseParametrization

Boundary First Flattening: A conformal flattening algorithm with control over the boundary conditions, either in terms of scale factor or curvature

References
  • [1] Boundary First Flattening, Rohan Sawhney and Keenan Crane, ACM ToG, 2017
Warning

This algorithm reorders the vertices so that boundary vertices are labeled [0, N-1] in order. Therefore, the uvs coordinates are not computed on the original mesh but on a reordered copy. Access the final result with self.mesh

Parameters:

Name Type Description Default
mesh SurfaceMesh

the input surface. Should be a triangulation of a topological disk.

required
bnd_scale_fctr Attribute

Scale factor on the boundary. Ignores values for interior vertices. Defaults to None. If provided, will automatically compute boundary curvature and ignore the bnd_curvaturea argument.

None
bnd_curvature Attribute

Geodesic curvature on the boundary. Ignores values for interior vertices. Defaults to None. If provided (and no bnd_scale_fctr is provided), will automatically compute boundary scale factors.

None
verbose bool

verbose mode. Defaults to False.

False

Other Parameters:

Name Type Description
save_on_corners bool

if True, stores the results on face corners instead of vertices. Defaults to True

use_cotan bool

if True, uses the cotan Laplacian instead of the connectivity Laplacian. Defaults to True.

hilbert_transform bool

if True, extends the boundary values with the Hilbert transform

Raises:

Type Description
Exception

if the mesh is not the triangulation of a topological disk

Note

If neither of bnd_scale_fctr and bnd_curvature are provided, the algorithm will run in default mode with scale factors = 0 on the boundary. Otherwise, provided scale factors have priority over provided curvatures.

flat_mesh property

A flat representation of the mesh where uv-coordinates are copied to xy.

Returns:

Name Type Description
SurfaceMesh SurfaceMesh

the flat mesh

run()

Run the algorithm

Raises:

Type Description
Exception

If the mesh is not a triangulation of a topological disk

Returns:

Name Type Description
SurfaceMesh SurfaceMesh

a copy of the original mesh with reordered vertices and computed uv-coordinates

PointCloud(data=None)

Bases: Mesh

A data structure for representing point clouds

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

__str__ str

Representation of the object and its elements as a string.

id_vertices property

Shortcut for range(len(self.vertices))

append(x)

Shortcut for self.vertices.append(x), since we can only append elements in the 'vertices' container

PolyLine(data=None)

Bases: Mesh

A data structure for representing polylines.

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

edges DataContainer

the container for all edges

__str__

Representation of the object and its elements as a string.

id_edges property

Shortcut for range(len(self.edges))

id_vertices property

Shortcut for range(len(self.vertices))

SurfaceMesh(data=None)

Bases: Mesh

A data structure for representing polygonal surfaces.

Attributes:

Name Type Description
vertices DataContainer

the container for all vertices

edges DataContainer

the container for all edges

faces DataContainer

the container for all faces

face_corners DataContainer

the container for all corner of faces

boundary_edges list

list of all edge indices on the boundary

interior_edges list

list of all interior edge indices (all edges \ boundary_edges)

boundary_vertices list

list of all vertex indices on the boundary

interior_vertices list

list of all interior verticex indices (all vertices \ boundary_vertices)

connectivity _SurfaceConnectivity

the connectivity utility class

id_corners property

Shortcut for range(len(self.face_corners))

id_edges property

Shortcut for range(len(self.edges))

id_faces property

Shortcut for range(len(self.faces))

id_vertices property

Shortcut for range(len(self.vertices))

clear_boundary_data()

Clear all boundary data. Next call to a boundary/interior container or method will recompute everything

is_edge_on_border(u, v)

whether edge (u,v) is a boundary edge or not

Parameters:

Name Type Description Default
u int

vertex id

required
v int

vertex id

required

Returns:

Name Type Description
bool bool

whether edge (u,v) is a boundary edge or not. Returns False if (u,v) is not a valid edge.

is_quad()

Checks if the mesh is a quadrangulation

Returns:

Name Type Description
bool bool

True if the mesh is quadrangular (all faces are quad)

is_triangular()

Checks if the mesh is a triangulation

Returns:

Name Type Description
bool bool

True if the mesh is triangular (all faces are triangles)

is_vertex_on_border(u)

whether vertex u is a boundary vertex or not.

Parameters:

Name Type Description Default
u int

vertex id

required

Returns:

Name Type Description
bool bool

whether vertex u is a boundary vertex or not.

ith_vertex_of_face(fid, i)

helper function to get the i-th vertex of a face, i.e. self.faces[fid][i]

Parameters:

Name Type Description Default
fid int

face id

required
i int

vertex id in face. Should be 0 <= vid < len(face)

required

Returns:

Name Type Description
int int

the id of the i-th vertex in face fid (self.faces[fid][i])

pt_of_face(fid)

point coordinates of vertices of face fid

Parameters:

Name Type Description Default
fid int

face id

required

Returns:

Name Type Description
Iterable

iterator of Vec objects representing point coordinates of vertices

Vec

Bases: ndarray

A simple class to manipulate vectors in mouette. Basically, it inherits from a numpy array and implements some quality of life features for 2D and 3D vectors especially.

x property writable

First coordinate of the vector

Returns:

Name Type Description
float float

vec[0]

xy property

First two coordinates of the vector

Returns:

Name Type Description
float

vec[:2]

y property writable

Second coordinate of the vector

Returns:

Name Type Description
float

vec[1]

z property writable

Third coordinate of the vector

Returns:

Name Type Description
float

vec[3]

X() classmethod

The [1,0,0] vector

Returns:

Name Type Description
Vec

[1,0,0]

Y() classmethod

The [0,1,0] vector

Returns:

Name Type Description
Vec

[0,1,0]

Z() classmethod

The [0,0,1] vector

Returns:

Name Type Description
Vec

[0,0,1]

dot(other)

Dot product between two vectors:

$ a \cdot b = \sum_i a[i]b[i]$

Parameters:

Name Type Description Default
other Vec

other vector to dot with

required

Returns:

Name Type Description
float float

the dot product

from_complex(c) classmethod

2D vector from complex number

Parameters:

Name Type Description Default
c complex
required

Returns:

Name Type Description
Vec

Vec(c.real, c.imag)

norm(which='l2')

Vector norm. Three norms are implemented: the Euclidean l2 norm, the l1 norm or the l-infinite norm:

l2 : $ \sqrt{ \sum_i v[i]^2 } $

l1 : $ \sum_i |v[i]| $

linf : $ \max_i |v[i]| $

Parameters:

Name Type Description Default
which str

which norm to compute. Choices are "l2", "l1" and "linf". Defaults to "l2".

'l2'

Returns:

Name Type Description
float float

the vector's norm

normalize(which='l2')

Normalizes the vector to have unit norm.

Parameters:

Name Type Description Default
which str

which norm to compute. Choices are "l2", "l1" and "linf". Defaults to "l2".

'l2'

normalized(vec, which='l2') staticmethod

Computes and returns a normalized vector of the input vector vec.

Parameters:

Name Type Description Default
vec Vec

the input vector

required
which str

which norm to compute. Choices are "l2", "l1" and "linf". Defaults to "l2".

'l2'

Returns:

Name Type Description
Vec

the normalized vector

outer(other)

Outer product between two vectors:

\(a \otimes b = c \in \mathbb{R}^{n \times n}\) such that \(c[i,j] = a[i]b[j]\).

Parameters:

Name Type Description Default
other Vec

the second vector

required

Returns:

Type Description
ndarray

np.array: an array of shape (n,n)

random(n) classmethod

Generates a random vector of size n with coefficients sampled uniformly and independently in [0;1)

Parameters:

Name Type Description Default
n int

size

required

Returns:

Name Type Description
Vec

zeros(n) classmethod

Generates a vector of size n full of zeros.

Parameters:

Name Type Description Default
n int

size

required

Returns:

Name Type Description
Vec

VolumeMesh(data=None)

Bases: Mesh

id_cells property

Shortcut for range(len(self.cells))

id_corners property

Shortcut for range(len(self.face_corners))

id_edges property

Shortcut for range(len(self.edges))

id_faces property

Shortcut for range(len(self.faces))

id_vertices property

Shortcut for range(len(self.vertices))

is_edge_on_border(*args)

Simple test to determine if a given edge is on the boundary of the mesh.

Returns:

Name Type Description
bool bool

Returns True if the given edge is on the boundary of the mesh.

is_face_on_border(*args)

Simple test to determine if a given face is on the boundary of the mesh.

Returns:

Name Type Description
bool bool

Returns True is the given face exists and is on the boundary of the mesh

is_tetrahedral()

Returns:

Name Type Description
bool bool

True if the mesh is tetrahedral (all cells are tetrahedra)