Measuring Distortion
Utilities classes to compute distortions of elements between "real" \(xyz\)-space and "parametric" \(uv\)-space.
ParamDistortion(mesh, uv_attr='uv_coords', save_on_mesh=True, verbose=False)
Bases: Worker
Utility class to compute various distortion metrics for surface parametrization.
Initializes the distortion utility class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
SurfaceMesh
|
the supporting mesh |
required |
uv_attr
|
str
|
the attribute name that stores the uv-coordinates on face corners. Defaults to "uv_coords". |
'uv_coords'
|
save_on_mesh
|
bool
|
If True, distortion values will be stored as attributes on the mesh. Defaults to True. |
True
|
verbose
|
bool
|
verbose mode. Defaults to False. |
False
|
Raises:
Type | Description |
---|---|
Exception
|
fails if the attribute 'uv_attr' does not exists. |
conformal
property
Conformal distortion, defined as \(\frac{||J||^2}{\det(J)}\)
iso
property
Isometric distortion
Defined as the distance from (\(\sigma_1\), \(\sigma_2\)) to (1,1) where \(\sigma_1\) and \(\sigma_2\) are the eigenvalues of J
scale
property
Scale distortion, defined as \(\frac12 (\det(J) + 1/\det(J))\)
shear
property
Shear distortion
Defined as \(c1 \cdot c2\) where \(c1\) and \(c2\) are the columns of J
stretch
property
Stretch distortion
Defined as the ratio \(\frac{\sigma_1}{\sigma_2}\) where \(\sigma_1\) and \(\sigma_2\) are the eigenvalues of J
summary
property
Computes a summary dictionnary of all distortion values as an average over the mesh
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
a dictionnary with aggregated values over the mesh |
run()
Run the distortion computation.
Raises:
Type | Description |
---|---|
Exception
|
fails if the mesh is not triangular. |
ZeroDivisionError
|
if degenerated elements are present in the parametrization. |
PointCloud(data=None)
Bases: Mesh
A data structure for representing point clouds
Attributes:
Name | Type | Description |
---|---|---|
vertices |
DataContainer
|
the container for all vertices |
__str__ |
str
|
Representation of the object and its elements as a string. |
id_vertices
property
Shortcut for range(len(self.vertices))
append(x)
Shortcut for self.vertices.append(x)
, since we can only append elements in the 'vertices' container
PolyLine(data=None)
Bases: Mesh
A data structure for representing polylines.
Attributes:
Name | Type | Description |
---|---|---|
vertices |
DataContainer
|
the container for all vertices |
edges |
DataContainer
|
the container for all edges |
__str__ |
Representation of the object and its elements as a string. |
id_edges
property
Shortcut for range(len(self.edges))
id_vertices
property
Shortcut for range(len(self.vertices))
QuadQuality(mesh, save_on_mesh=True, verbose=False)
Bases: Worker
Utility class to compute various quality metrics on quad meshes
SurfaceMesh(data=None)
Bases: Mesh
A data structure for representing polygonal surfaces.
Attributes:
Name | Type | Description |
---|---|---|
vertices |
DataContainer
|
the container for all vertices |
edges |
DataContainer
|
the container for all edges |
faces |
DataContainer
|
the container for all faces |
face_corners |
DataContainer
|
the container for all corner of faces |
boundary_edges |
list
|
list of all edge indices on the boundary |
interior_edges |
list
|
list of all interior edge indices (all edges \ boundary_edges) |
boundary_vertices |
list
|
list of all vertex indices on the boundary |
interior_vertices |
list
|
list of all interior verticex indices (all vertices \ boundary_vertices) |
connectivity |
_SurfaceConnectivity
|
the connectivity utility class |
id_corners
property
Shortcut for range(len(self.face_corners))
id_edges
property
Shortcut for range(len(self.edges))
id_faces
property
Shortcut for range(len(self.faces))
id_vertices
property
Shortcut for range(len(self.vertices))
clear_boundary_data()
Clear all boundary data. Next call to a boundary/interior container or method will recompute everything
is_edge_on_border(u, v)
whether edge (u,v) is a boundary edge or not
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
int
|
vertex id |
required |
v
|
int
|
vertex id |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
whether edge (u,v) is a boundary edge or not. Returns False if (u,v) is not a valid edge. |
is_quad()
Checks if the mesh is a quadrangulation
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the mesh is quadrangular (all faces are quad) |
is_triangular()
Checks if the mesh is a triangulation
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the mesh is triangular (all faces are triangles) |
is_vertex_on_border(u)
whether vertex u
is a boundary vertex or not.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
int
|
vertex id |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
whether vertex |
ith_vertex_of_face(fid, i)
helper function to get the i-th vertex of a face, i.e. self.faces[fid][i]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fid
|
int
|
face id |
required |
i
|
int
|
vertex id in face. Should be 0 <= vid < len(face) |
required |
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
the id of the i-th vertex in face |
pt_of_face(fid)
point coordinates of vertices of face fid
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fid
|
int
|
face id |
required |
Returns:
Name | Type | Description |
---|---|---|
Iterable |
iterator of Vec objects representing point coordinates of vertices |
VolumeMesh(data=None)
Bases: Mesh
id_cells
property
Shortcut for range(len(self.cells))
id_corners
property
Shortcut for range(len(self.face_corners))
id_edges
property
Shortcut for range(len(self.edges))
id_faces
property
Shortcut for range(len(self.faces))
id_vertices
property
Shortcut for range(len(self.vertices))
is_edge_on_border(*args)
Simple test to determine if a given edge is on the boundary of the mesh.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
Returns True if the given edge is on the boundary of the mesh. |
is_face_on_border(*args)
Simple test to determine if a given face is on the boundary of the mesh.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
Returns True is the given face exists and is on the boundary of the mesh |
is_tetrahedral()
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the mesh is tetrahedral (all cells are tetrahedra) |