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Signed Distance Function N Learning a SDF: a binary classification problem
Let {2 be a compact subset of R™ and 0} be its boundary. g We propose to learn a signed distance function by optimizing the hinge-Kantorovitch-
The signed distance function Sq is defined over all R" as: Rubinstein loss function over a 1-Lipschitz neural architecture:
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Sq is a 1-Lipschitz function by construction.

Achieving Robustness in Classification Using Optimal Transport with Hinge Regularization, Serrurier et al. (2021)

The 1—Lipschitz .prop.erty ga:ran.tees robustnessoto o The SDF IS the minimizer Of the hKR lOSS
geometrical queries like projection. When dealing m(z) =z — f(z) /()
with approximate signed distance function, it is |V f(z)l]

Let m > 0 and f* be a minimizer of Lxr(f,y) under constraint that

Zznge( f,y) = 0, where the minimum is taken over all possible 1-Lipschitz functions.

critical to always underestimate the true distance

Then:

Sa(r)

. > m

So | f | > ‘ SQ| | f | < ‘ SQ‘ Small m values implies high geometric fidelity but less stable training.

1-Lipschitz Neural Networks Algorithmic pipeline

Optimizing the hKR loss requires a neural architecture
that is 1-Lipschitz by construction. This can be made by

composing the following layer: Surface/Other >
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Reconstructed Level Sets (Marching Cubes)
where:
D = diag (Zj (WTW)i; exp(g; — Qi)\) (A}
o(x) = max(0, x) _
Input Sampled Inside/Outside
. Geometry Point Dataset Partition
Parameters of the layers are W (matrix), b and q (vectors).
Distance Field 0 0.02
A Unified Algebraic Perspective on Lipschitz Neural Networks, Araujo et al. (2023)
Inside/outside partitioning Unsigned distance field
The generalized winding number is the sum of . |
solid angles over a surface. It allows the The hyperparameter m in the hinge loss e

plays the role of a small 'width' around
the isosurface.

computation of y even for noisy, incomplete or
faulty input data.
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This allows the reconstruction of

woq () = % /zm dO(x)

unsigned distance fields for open curves

_ and surfaces.
w € {0;1} for closed geometries

. ' : Input ¢ Generalized windi Resulting signed
w € [0;1] for imperfect geometries npub geometry - Genera jzed Winding e S

Fast Winding Numbers for Soups and Clouds, Barill et al. (2018)

Isosurface reconstruction Robust Geometric Queries

Ray Marching Isosurface sampling Skeleton sampling
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