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The SDF is the minimizer of the hKR loss

Inside/outside partitioning
The generalized winding number is the sum of 
solid angles over a surface. It allows the 
computation of y even for noisy, incomplete or 
faulty input data.

for closed geometries
for imperfect geometries

Fast Winding Numbers for Soups and Clouds, Barill et al. (2018)

A Unified Algebraic Perspective on Lipschitz Neural Networks, Araujo et al. (2023)

Achieving Robustness in Classification Using Optimal Transport with Hinge Regularization, Serrurier et al. (2021)

We propose to learn a signed distance function by optimizing the hinge-Kantorovitch-
Rubinstein loss function over a 1-Lipschitz neural architecture:

1-Lipschitz Neural Networks

The 1-Lipschitz property garantees robustness to 
geometrical queries like projection. When dealing 
with approximate signed distance function, it is 
critical to always underestimate the true distance

Small m values implies high geometric fidelity but less stable training.

Optimizing the hKR loss requires a neural architecture 
that is 1-Lipschitz by construction. This can be made by 
composing the following layer:

Parameters of the layers are W (matrix), b and q (vectors).

where:

Algorithmic pipeline

Unsigned distance field

The hyperparameter m in the hinge loss 
plays the role of a small 'width' around 
the isosurface. 

This allows the reconstruction of 
unsigned distance fields for open curves 
and surfaces.
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